1/secA+tanA = secA - tanA. prove it
Answers
Answered by
16
1/secA+tanA
Multiply by secA - tanA on both denominator and nominator
(secA - tanA) ÷ (sec²A - tan²A)
We know, sec²A - tan²A = 1
Then,
(secA - tanA) ÷ 1
SecA - tanA
×××××××××××××××××××××××
Hence, proved
I hope this will help you
(-:
Multiply by secA - tanA on both denominator and nominator
(secA - tanA) ÷ (sec²A - tan²A)
We know, sec²A - tan²A = 1
Then,
(secA - tanA) ÷ 1
SecA - tanA
×××××××××××××××××××××××
Hence, proved
I hope this will help you
(-:
soham1211:
thanks a lot
Answered by
8
Rationalize the left hand side
1/sec A+tanA*secA-tanA /secA,-tanA
secA-tanA/sec2A-tan2A. (sec2A-tan2A=1)
secA-tanA,
Proven
1/sec A+tanA*secA-tanA /secA,-tanA
secA-tanA/sec2A-tan2A. (sec2A-tan2A=1)
secA-tanA,
Proven
Similar questions