1/secx-tanx - 1/cosx = 1/cosx - 1/secx+tanx
Answers
Answered by
54
✔✔Hence, it is proved ✅✅.
#BeBrainly.
Attachments:
TANU81:
♥️_♥️ Awesome presentation
Answered by
22
here is your answer OK dude
LHS :- ( 1/secX - tanX) - 1/cosX
= [ 1(secX + tanX) / secX - tanX (secX +tanX)] - secX
= [ secX + tanX /sec2X - tan2X] - secX
= secX +tanX - secX
=tanX
RHS :- 1/cosX - 1/secX+tanX
=secX -[ 1(secX - tanX)/secX+tanX(secX-tanX)]
=secX - ( secX - tanX / sec2X - tan2X)
=secX - secX + tanX
= tanX
So, LHS = RHS. hence proved.
LHS :- ( 1/secX - tanX) - 1/cosX
= [ 1(secX + tanX) / secX - tanX (secX +tanX)] - secX
= [ secX + tanX /sec2X - tan2X] - secX
= secX +tanX - secX
=tanX
RHS :- 1/cosX - 1/secX+tanX
=secX -[ 1(secX - tanX)/secX+tanX(secX-tanX)]
=secX - ( secX - tanX / sec2X - tan2X)
=secX - secX + tanX
= tanX
So, LHS = RHS. hence proved.
Similar questions