Math, asked by narutooooooo111, 1 month ago

1 sf sin o = √3/2
find the value of all T- ratios

Answers

Answered by MathCracker
24

Correct Question :-

If  \sin \theta =  \frac{ \sqrt{3} }{2}  \\ then, find the value of all T - ratios.

Step by step explanation :-

First see the attached diagram to the answer.

Let us draw the right angled triangle ∆ABC, ∠B = 90° and ∠A = θ.

We know that,

  \rm{ \sin \theta =  \frac{perpendicular}{hypotenuse} } \\

Hence,

 \rm{ \sin \theta =  \frac{ \sqrt{3} }{2} } \\

By Pythagoras theorem,

➨ AC² = AB² + BC²

or

➨ AB² = AC² - BC² = 4k² - 3k² = k²

➨ AB² = k²

Taking square root both side,

➨ AB = k

Finding other T ratios using their definition,

\rm{ \cos =  \frac{AB}{AC} =  \frac{1}{2}  } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \rm{ \tan  = \frac{BC}{AB} =   \frac{ \sqrt{ 3 } }{1} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \rm{ \csc =  \frac{1}{ \sin \theta} =  \frac{2}{ \sqrt{3} }  } \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ \rm{ \sec  = \frac{1}{ \cos \theta}   =  \frac{1}{ \frac{1}{2} } = 2 }  \:  \:  \:  \:  \:  \:  \:  \: \\  \\\rm{ \cot =  \frac{1}{ \tan \theta}  =  \frac{1}{ \frac{ \sqrt{3} }{1} }  =  \frac{1}{ \sqrt{3} } }

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Learn more from brainly :

1. If 4 sin^2 = 3 . find all other T - ratio.

https://brainly.in/question/9778806

2. if 3 sin 0 = 2, find the values of all the t-ratios.

https://brainly.in/question/43943948

Attachments:
Answered by mathdude500
6

 \green{\large\underline{\sf{Solution-}}}

Given that

\red{\rm :\longmapsto\:sin \theta \:  = \dfrac{ \sqrt{3} }{2} \: }

can be rewritten as

\red{\rm :\longmapsto\:sin \theta \:  = sin60 \degree \: }

 \red{\rm \implies\:\theta  = 60\degree  \: }

So, other Trigonometric ratios are

 \green{\rm :\longmapsto\:cos60\degree  = \dfrac{1}{2} \: }

 \blue{\rm :\longmapsto\:tan60\degree  =  \sqrt{3}  \: }

 \purple{\rm :\longmapsto\:cosec60\degree  =  \dfrac{2}{ \sqrt{3} }  \: }

 \pink{\rm :\longmapsto\:sec60\degree  =  2  \: }

 \orange{\rm :\longmapsto\:cot60\degree  =  \dfrac{1}{ \sqrt{3} }   \: }

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

 \blue{\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}}

Similar questions