Math, asked by sakshishakya2005, 9 months ago

1-sin/1+sin=(sec-tan)^2
pls ans ASAP

Attachments:

Answers

Answered by mysticd
1

 LHS = \frac{(1-sin \theta)}{(1+sin \theta)} \\= \frac{(1-sin \theta)(1-sin \theta)}{(1+sin \theta)(1-sin \theta)}

= \frac{(1-sin \theta)^{2}}{1^{2} - sin^{2} \theta} \\= \frac{(1-sin \theta)^{2}}{cos^{2} \theta}

= \Big(\frac{(1-sin\theta)}{cos\theta}\Big)^{2}\\= \Big( \frac{1}{cos\theta} - \frac{sin \theta}{cos \theta}\Big)^{2}

= \Big( sec\theta - tan \theta\Big)^{2} \\= RHS

Therefore.,

 \red {\frac{(1-sin \theta)}{(1+sin \theta)}}\green {= \Big( sec\theta - tan \theta\Big)^{2}}

•••♪

Similar questions