1). sin 2A +
cos2A + cos 2B + cos 2 (A - B) + 1 = 4 cos A. cos B. Cos (A - B)
sin 2A + sin 2B + sin 2C - sin 2 (A+B+C) = 4 sin (B+C) sin (C+A
Answers
Answered by
1
Answer:
2
Step-by-step explanation:
Here we want +1 and as such we write cos2A=1−2sin
2
A and combine the other two terms.
L.H.S. =1−2sin
2
A+2sin(B+C)sin(C−B) (Note)
=1−2sin
2
A−2sinAsin(B−C) [∵sin(−θ)=−sinθ]
=1−2sinA[sinA+sin(B−C)]
=1−2sinA[sin(B+C)+sin(B−C)]
=1−2sinA(2sinBcosC)
=1−4sinAsinBcosC.
Similar questions