Math, asked by Rudhra13579, 10 months ago

(1 + sin A) /cos A + cos A / (1+sin A) = 2 sec A​

Answers

Answered by adithyakittu
1

Answer:

2seca

Step-by-step explanation:

=((1+sinA)square + (cosA))/(1+sinA)(cosA)

=(1+(sinA)square+(cosA)square+2(sinA))/(1+sinA)(cosA)

=(2+2sinA)/(1+sinA)(cosA)||because (sinA)square+(cosA)square=1

=2(1+sinA)/(1+sinA)(cosA)

=2/cosA

=2secA

Answered by CharmingPrince
8

\huge{\bigstar}{ \green{ \mathfrak{ \underline{ \underline{Question}}}}}{\bigstar}

□☆□☆□☆□☆□☆□☆□☆□☆□☆□

\displaystyle \frac{1 + sin A}{cos A} + \frac{cos A}{1+sin A}= 2 sec A

□☆□☆□☆□☆□☆□☆□☆□☆□☆□

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

\huge{\bigstar}{ \green{ \mathfrak{ \underline{ \underline{Answer}}}}}{\bigstar}

\pink{ \underline{\mathcal{Kindly \ refer \ to \ the \ attachment}}}

\bf{\boxed{Some \ additional \ information}}

\boxed{\mathcal{</p><p></p><p>\begin{minipage}{19.08 em}</p><p></p><p>Fundamental \ Trigonometric \ Identities \\ \\</p><p></p><p>\sin^2\theta + \cos^2\theta=1 \\ \\</p><p></p><p>1+\tan^2\theta = \sec^2\theta \\ \\</p><p></p><p>1+\cot^2\theta = \text{cosec}^2 \, \theta</p><p></p><p>\end{minipage}</p><p></p><p>}}

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

Attachments:
Similar questions