Accountancy, asked by pathaksruti2005, 8 months ago

(1+ sin A/cosec A - cot A) - (1- sin A/cosec A+ cot A) = 2(1 + cot A)
No irrelevant answers otherwise I will surely report that answer
Plss it is urgent...!!​

Answers

Answered by samruddhipandit777
13

They r 2 answer and i have search and answer so Hope it helps you mark as brainliest if it helps you.

Answer:

1 answer

Step-by-step explanation:

Solving LHS,

1+sin A / cosec A - cot A - 1- sin A/ cosec A+cot A

(1+sin A)(cosec A+ cot A) - (1-sin A)(cosec A- cot A) / cosec 2 A - cot2 A ......[(a+b)(a-b) =a2- b2]

cosec A + cot A + 1 + cos A - cosec A + cot A + 1 - cos A

2 + 2 cot A

2(1+ cot A) = RHS

2 answer

capturebus

capturebus

given: (1+ sinA)/(cosecA- cotA) - (1 - sinA)/(cosecA + cotA) = 2(1+cotA)

to find: prove the above equation.

now to solve such problems, we need to find first LHS and equate it with RHS.

Solving LHS first,

(1 + sinA/cosecA - cotA) - (1 - sinA/cosecA + cotA)

after converting all trigonometric ratios in terms of sin and cos, we get

(1+sinA)sinA / (1-cosA) - (1-sinA)sinA / (1+cosA)

Then we need to do cross multiplication,

{(1+sinA)(1+cosA)sinA - (1-sinA)(1-cosA)sinA}/ (1-cos²A)

Now 1-cos²A is sin²A, So replacing it

{(1+sinA)(1+cosA)sinA - (1-sinA)(1-cosA)sinA}/ (sin²A)

cancelling sinA from numerator and denominator, and multiply further,

{1+ sinA + cosA+ sinAcosA - (1- sinA-cosA+sinAcosA)}/ sinA

opening all brackets,

{1+ sinA + cosA+ sinAcosA - 1+ sinA+cosA-sinAcosA)}/ sinA

we get,

2sinA+2cosA/sinA

2(sinA+cosA)/sinA

2{1+ cotA} RHS

Answered by sandy1816
22

Answer:

</p><p>{\green{\underline{\underline{\huge{\mathfrak\red{your\:answer\:attached\:in\:the\:photo}}}}}}

Attachments:
Similar questions