Math, asked by hemant56789, 1 year ago

1) sin Acos A(tan A + cotA) = 1​

Answers

Answered by damesamsii
2

Answer:

Step-by-step explanation:

LHS

= sinAcosA(tanA + cotA)

= sinAcosA(\frac{sinA}{cosA} + \frac{cosA}{sinA}  )

= sinAcosA(\frac{sin^{2}A  + cos^{2} A}{sinAcosA} )

Since sin^{2}A  + cos^{2}A  = 1

LHS = sinAcosA(\frac{1}{sinAcosA})

LHS = 1

LHS = RHS

Hence, proved!

Answered by Ashbolt
1

Step-by-step explanation:

=sinAcosA(sinA/cosA+cosA/sinA)

=sinAcosA(sin^2A+cos^2A/sinAcosA)

=sin^2A+cos^2A

=1

Similar questions