√(1+sin theta/1-sin theta ) + √(1-sin theta /1+ sin theta)= 2sec theta
Answers
Answered by
3
Answer:
\sqrt{\frac{1+sin\theta}{1-sin\theta}}+\sqrt{\frac{1-sin\theta}{1+sin\theta}}=2sec\theta
Step-by-step explanation:
\sqrt{\frac{1+sin\theta}{1-sin\theta}}+\sqrt{\frac{1-sin\theta}{1+sin\theta}}
=\frac{\left(\sqrt{1+sin\theta}\right)^{2}+\left(\sqrt{1-sin\theta}\right)^{2}}{\sqrt{(1-sin\theta)(1+sin\theta)}}
=\frac{1-sin\theta+1+sin\theta}{\sqrt{1^{2}-sin^{2}\theta}}
=\frac{2}{\sqrt{cos^{2}\theta}}
= \frac{2}{cos\theta}
= 2sec\theta
=$RHS$
Therefore,
\sqrt{\frac{1+sin\theta}{1-sin\theta}}+\sqrt{\frac{1-sin\theta}{1+sin\theta}}=2sec\theta
Answered by
3
Answer:
hope this helps u ....
mark me as brainlist
Attachments:
Similar questions