Math, asked by sparsh1923, 2 months ago

1 + sin theta / 1 - sin theta = ( sec theta + tan theta )^2​

Answers

Answered by Anonymous
26

 \odot \:  \:  \:   \:  \:  \large {\mathfrak{\underline{ \underline{ \green{Question :}} \:  \: }}}_{ \bigstar \star} \\  \\

  • Prove that, 1 + sin theta / 1 - sin theta = ( sec theta + tan theta )^2

\\ \odot \:  \:  \:   \:  \:  \large {\mathfrak{\underline{ \underline{ \green{Solution :}} \:  \: }}}_{ \bigstar \star} \\  \\

  \sf \:  \:  \:  \:  \:  \bull\:  \:  \:  \:  \:  \frac{1 +  \sin \theta}{1 -  \sin \theta} \\  \\

 \implies \sf \frac{ \big(1 +  \sin \theta\big)\big(1 +  \sin \theta\big)}{\big(1 -  \sin \theta\big)\big(1 +  \sin \theta\big)}  \\  \\

 \implies \sf \frac{ {\big(1 +  \sin \theta\big)}^{2} }{\big(1 -   { \sin}^{2} \theta\big) }  \\  \\

 \implies   \sf\frac{1 + 2 \sin \theta +  { \sin}^{2} \theta }{ { \cos}^{2}  \theta}  \\  \\

 \implies \sf  { \sec}^{2}  \theta  + 2 \tan \theta \sec \theta +  { \tan}^{2} \theta \\  \\

 \implies  { \underline{ \boxed{{\bf{\bigg( \sec \theta +  { \tan} \theta \bigg) }^{2}  }}}}\:   \:  \:  \:  \:  \:  \:  \:  \: \:  \:  hence\:  \: proved. \\  \\

Answered by sai172982
2

Answer:

rationalise lhs we get, (1+sin) ²/1²-sin²

(1+sin)²/cos²

(1+sin/cos) ²

(1/cos+sin/cos) ²

(sec+tan) ²

Similar questions