Math, asked by devisathyasp, 19 days ago

(1-sin theta/1+sin theta)=(sec theta-tan theta)^2​ pls solve fast

Answers

Answered by Starrex
8

Tσ ρяσνє

ㅤㅤ\large\sf{\leadsto \dfrac{1-sin\theta}{1+sin\theta}=(sec\theta-tan\theta)^2 }

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀

We know that :

ㅤㅤㅤㅤ\underline{\boxed{\bf{sin^2 \theta + cos^2 \theta =1 }}}

Sσℓνiиg fσя LHS —

ㅤㅤ\large\sf{\implies \dfrac{1-sin\theta}{1+sin\theta}=(sec\theta-tan\theta)^2 }

Multiplying both numerator and denominator by \large\tt{(1-sin\theta)}

ㅤㅤ\large\sf{\implies \dfrac{(1-sin\theta)(1-sin\theta)}{(1+sin\theta)(1-sin\theta)}}

ㅤㅤ\large\sf{\implies \dfrac{(1-sin\theta)^2}{(1-sin^2 \theta)}}

ㅤㅤ\large\sf{\implies \left(\dfrac{1-sin\theta}{cos\theta}\right)^2}

ㅤㅤ\large\sf{\implies \left(\dfrac{1}{cos\theta}-\dfrac{sin\theta}{cos\theta}\right)^2}

ㅤㅤ\large\sf{\implies (sec\theta-tan\theta)^2}

ㅤㅤㅤㅤHєиcє ρяσνєd

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀

\bigstar{\large\bf\purple{Identities \:used:}}

ㅤㅤ\large\sf{\longrightarrow (a+b)(a-b)=a^2 -b^2}

ㅤㅤ\large\sf{\longrightarrow 1-sin^2 \theta =cos\theta}

ㅤㅤ\large\sf{\longrightarrow \dfrac{1}{cos\theta}=sec\theta}

ㅤㅤ\large\sf{\longrightarrow \dfrac{sin\theta}{cos\theta}=tan\theta}

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀

Similar questions