Math, asked by himanSHIuuuggg5746, 9 months ago

(1-sin theta+cos theta) square prove that 2 (1+cos theta)(1-sin theta)

Answers

Answered by Unni007
7

To prove: (1-sin\,\theta+cos\,\theta)^2=2(1+cos\,\theta)(1-sin\,\theta)

Consider,

LHS = (1-sin\,\theta+cos\,\theta)^2

using ( a + b )² = a² + b² + 2ab,

we get  

      = (1-sin\,\theta)^2+cos^2\,\theta+2\times cos\,\theta\times(1-sin\,\theta)

Again using ( a - b )² = a² + b² - 2ab,

we get  

 = 1+sin^2\,\theta-2\times sin\,\theta+cos^2\,\theta+2cos\,\theta-2cos\,\theta\:sin\,\theta

= 1+sin^2\,\theta+cos^2\,\theta-2\times sin\,\theta+2cos\,\theta-2cos\,\theta\:sin\,\theta

= 1+1-2\times sin\,\theta+2cos\,\theta-2cos\,\theta\:sin\,\theta

= 2-2\times sin\,\theta+2cos\,\theta-2cos\,\theta\:sin\,\theta

= 2(1-sin\,\theta)+2cos\,\theta(1-sin\,\theta)

= (1-sin\,\theta)(2+2cos\,\theta)

= 2(1-sin\,\theta)

=  RHS

Hence The relation is proved !!!!!!

Similar questions