1 - sin theta + cos theta whole bracket square is equal to 2 bracket 1 + cos theta bracket bracket 1 minus sin theta bracket
Answers
Answered by
71
to prove: (1- sinθ+ cos θ)²=2(1+cosθ)(1-sinθ)
proof:
let (1- sin θ )= a
cosθ =b
LHS
(a+b)²=a²+b²+2ab
= 1+sin²θ-2sinθ+cos²θ+2ab
=1+1-2sinθ+2ab
=2(1-sinθ+ab)
=2(a+ab)
=2a(a+b)
RHS
2(1+b)(a)=2a+2ab=2a (a+b)
LHS =RHS
proof:
let (1- sin θ )= a
cosθ =b
LHS
(a+b)²=a²+b²+2ab
= 1+sin²θ-2sinθ+cos²θ+2ab
=1+1-2sinθ+2ab
=2(1-sinθ+ab)
=2(a+ab)
=2a(a+b)
RHS
2(1+b)(a)=2a+2ab=2a (a+b)
LHS =RHS
Answered by
65
Answer:
To prove:
Consider,
LHS =
using ( a + b )² = a² + b² + 2ab, we get
=
Again using ( a - b )² = a² + b² - 2ab, we get
=
=
=
=
=
=
=
= RHS
Hence Proved
Similar questions