1 - sin theta + cos theta whole square is equal to 2 into 1 + cos theta into 1 minus sin theta
Answers
Answered by
8
hope helps✍️✍️✍️✍️✍️✍️✍️✍️✍️✍️
PLS MARK ️R️INLIEST
PLS MARK ️R️INLIEST
Attachments:
Answered by
7
Answer:
The proof is explained step-wise below :
Step-by-step explanation:
To prove : (1 - sinθ + cosθ)² = 2(1 + cosθ)(1 - sinθ)
Proof : Taking L.H.S.
(1 - sinθ + cosθ)²
Using the trinomial identity of whole square :
(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ac
(1 - sinθ + cosθ)² = 1 + sin²θ + cos²θ - 2sinθ - 2sinθcosθ + 2cosθ
⇒ 1 + 1 - 2sinθ - 2sinθcosθ + 2cosθ
⇒ 2 - 2sinθ - 2sinθcosθ + 2cosθ
⇒ 2(1 - sinθ - sinθcosθ + cosθ)
⇒ 2(1 + cosθ)(1 - sinθ)
= R.H.S.
Hence Proved.
Dsjindal:
NYC answer....
Similar questions