Math, asked by areebimam32, 10 months ago

1 - sin theta is equal to

Answers

Answered by avishkapashine
26

Step-by-step explanation:

cos theta . 1-sin^2 theta = cos^2 theta.. taking square root cos theta =1-sintheta

Answered by harendrachoubay
36

The value of 1 - \sin \theta is equal to(\sin \dfrac{A}{2} -\cos \dfrac{A}{2})^2.

Step-by-step explanation:

We have,

1 - \sin \theta

To find, the value of 1 - \sin \theta = ?

1 - \sin \theta               ......... (1)

Using the trigonometric identity,

\sin^2 \dfrac{A}{2} +\cos^2 \dfrac{A}{2}=1 and

\sin A=2\sin \dfrac{A}{2}\cos \dfrac{A}{2}

Now, equation (1) can be written as,

=\sin^2 \dfrac{A}{2} +\cos^2 \dfrac{A}{2}-2\sin \dfrac{A}{2}\cos \dfrac{A}{2}

=(\sin \dfrac{A}{2} -\cos \dfrac{A}{2})^2

∴ The value of 1 - \sin \theta =(\sin \dfrac{A}{2} -\cos \dfrac{A}{2})^2

Thus, the value of 1 - \sin \theta is equal to(\sin \dfrac{A}{2} -\cos \dfrac{A}{2})^2.

Similar questions