1/sin x-sin 2x ,Integrate the given function defined over a proper domain w.r.t. x.
Answers
Answered by
6
HELLO DEAR,
GIVEN:-
∫dx/(sinx - sin2x)
=> I = ∫dx/sinx(1 - 2cosx)
=> I = ∫sinx.dx/sin²x(1 - 2cosx)
put cosx = t
=> -sinx.dx = dt
therefore,
I = -∫dt/(1 - t²)(1 - 2t)
solving by partial fraction;
-1/(1 - t)(1 + t)(1 - 2t) = A/(1 - t) + B/(1 + t) + C/(1 - 2t)
-1 = A(1 + t)(1 - 2t) + B(1 - t)(1 - 2t) + C(1 - t²)
-1 = A(1 - 2t + t - 2t²) + B(1 - 2t - t + 2t²) + C(1 - t²)
-1 = t²(-2A + 2B - C) + t(-A - 3B) + (A + B + C)
on comparing both side like power of cofficient of x.
-2A + 2B - C = 0 , -A - 3B = 0 , A + B + C = -1
on solving we get,
A = -1/2 , B = -1/6 , C = -4/3
therefore, I = -1/2∫dt/(t - 1) - 1/6∫dt/(1 + t) - 4/3∫dt/(1 - 2t)
=> I = -1/2log|t - 1| - 1/6log|t + 1| + 2/3∫(-2dt)/(1 - 2t)
=> I = -1/2log|t - 1| - 1/6log|t + 1| + 2/3log|1 - 2t| + C.
=> I = -1/2log|cosx - 1| - 1/6log|cosx + 1| + 2/3log|1 - 2cosx| + C.
I HOPE ITS HELP YOU DEAR,
THANKS
GIVEN:-
∫dx/(sinx - sin2x)
=> I = ∫dx/sinx(1 - 2cosx)
=> I = ∫sinx.dx/sin²x(1 - 2cosx)
put cosx = t
=> -sinx.dx = dt
therefore,
I = -∫dt/(1 - t²)(1 - 2t)
solving by partial fraction;
-1/(1 - t)(1 + t)(1 - 2t) = A/(1 - t) + B/(1 + t) + C/(1 - 2t)
-1 = A(1 + t)(1 - 2t) + B(1 - t)(1 - 2t) + C(1 - t²)
-1 = A(1 - 2t + t - 2t²) + B(1 - 2t - t + 2t²) + C(1 - t²)
-1 = t²(-2A + 2B - C) + t(-A - 3B) + (A + B + C)
on comparing both side like power of cofficient of x.
-2A + 2B - C = 0 , -A - 3B = 0 , A + B + C = -1
on solving we get,
A = -1/2 , B = -1/6 , C = -4/3
therefore, I = -1/2∫dt/(t - 1) - 1/6∫dt/(1 + t) - 4/3∫dt/(1 - 2t)
=> I = -1/2log|t - 1| - 1/6log|t + 1| + 2/3∫(-2dt)/(1 - 2t)
=> I = -1/2log|t - 1| - 1/6log|t + 1| + 2/3log|1 - 2t| + C.
=> I = -1/2log|cosx - 1| - 1/6log|cosx + 1| + 2/3log|1 - 2cosx| + C.
I HOPE ITS HELP YOU DEAR,
THANKS
Similar questions