sec²θ/tan²θ-4tanθ+3 ,Integrate the given function defined over a proper domain w.r.t. x.
Answers
Answered by
4
HELLO DEAR,
GIVEN:-
∫sec²θ.dθ/tan²θ-4tanθ+3
put tanθ = t
=> sec²θ.dθ = dt
therefore,
=> I = dt/(t² - 4t + 3)
=> I = dt/(t² - 3t - t + 3)
=> I = dt/(t - 3)(t - 1)
=> I =
=> I = (-1/2)∫dt/(t - 1) - (-1/2)∫dt/(t - 3)
=> I = -1/2log|t - 1| + 1/2log|t - 3| + C.
put the value of t = tanθ
=> I = -1/2log|tanθ - 1| + 1/2log|tanθ - 3| + C.
I HOPE ITS HELP YOU DEAR,
THANKS
GIVEN:-
∫sec²θ.dθ/tan²θ-4tanθ+3
put tanθ = t
=> sec²θ.dθ = dt
therefore,
=> I = dt/(t² - 4t + 3)
=> I = dt/(t² - 3t - t + 3)
=> I = dt/(t - 3)(t - 1)
=> I =
=> I = (-1/2)∫dt/(t - 1) - (-1/2)∫dt/(t - 3)
=> I = -1/2log|t - 1| + 1/2log|t - 3| + C.
put the value of t = tanθ
=> I = -1/2log|tanθ - 1| + 1/2log|tanθ - 3| + C.
I HOPE ITS HELP YOU DEAR,
THANKS
Similar questions