Math, asked by adityabanerjee555, 7 months ago

[√1-SinA÷√1+sinA] is equals to​

Answers

Answered by ItzArchimedes
8

Solution :-

We need to find ,

  • \sf\dfrac{\sqrt{1-sinA}}{\sqrt{1+sinA}}

It can be written as,

\implies\sf\sqrt{\dfrac{1-sinA}{1+sinA}}

By Rationalizing the denominator,

\implies\sf\sqrt{\dfrac{1-sinA}{1+sinA}\times\dfrac{1-sinA}{1-sinA}}

\implies\sf\sqrt{\dfrac{(1-sinA)(1-sinA)}{(1+sinA)(1-sinA)}}

Using ,

• ( a - b ) ( a - b ) = ( a - b )²

• ( a + b ) ( a - b ) = a² - b²

\implies\sf\sqrt{\dfrac{(1-sinA)^2}{1^2-sin^2A}}

\implies\sf\dfrac{\sqrt{(1-sinA)^2}}{\sqrt{1-sin^2A}}\qquad\;\;\;\Big(\because \sqrt{\dfrac{a}{b}}=\dfrac{\sqrt{a}}{\sqrt{b}}\Big)

\implies\sf\dfrac{1-sinA}{\sqrt{cos^2A}}\qquad\;\;\;\Big[\because 1-sin^2A=cos^2A\Big]

\sf\implies \dfrac{1-sinA}{cosA}

\sf\implies\dfrac{1}{cosA}-\dfrac{sinA}{cosA}

Substituting ,

\sf\dfrac{1}{cosA}=secA

\sf\dfrac{sinA}{cosA}=tanA

\implies \underline{\boxed{\dfrac{\sqrt{\textbf{\textsf{1-sinA}}}}{\sqrt{\textbf{\textsf{1+sinA}}}}=\textbf{\textsf{secA-tanA}}}}

Similar questions