Math, asked by pranav3910, 1 year ago

1 - sinA/ 1 + sinA =( sec A- tan A)^2

Answers

Answered by Swarup1998
6
➡HERE IS YOUR ANSWER⬇

■] LONG WAY :

L.H.S.

 =  \frac{1 - sin \alpha }{1 + sin \alpha }  \\  \\  =  \frac{(1 - sin \alpha )(1 - sin \alpha )}{(1 + sin \alpha )(1 - sin \alpha )}  \\  \\  =  \frac{1 - 2 sin \alpha  +  {sin}^{2} \alpha  }{1 -  {sin}^{2}  \alpha }  \\  \\  =  \frac{1 - 2sin \alpha  +  {sin}^{2} \alpha  }{ {cos}^{2}  \alpha }  \\  \\  =  \frac{1}{ {cos}^{2}  \alpha }  - 2 \frac{1}{cos \alpha }  \frac{sin \alpha }{cos \alpha }  +  \frac{ {sin}^{2}  \alpha }{ {cos}^{2} \alpha  }  \\  \\  =  {sec}^{2}  \alpha  - 2sec \alpha  \: tan \alpha  +  {tan}^{2}  \alpha  \\  \\  =  {(sec \alpha  - tan \alpha )}^{2}

= R.H.S. (Proved)

■] EASY WAY :

L.H.S.

 =  \frac{1 - sin \alpha }{1 + sin \alpha }  \\  \\  =  \frac{(1 - sin \alpha )(1 - sin \alpha )}{(1 + sin \alpha )(1 - sin \alpha )}  \\  \\  =  \frac{ {(1 - sin \alpha )}^{2} }{1 -  {sin}^{2}  \alpha }  \\  \\  =  \frac{ {(1 - sin \alpha )}^{2} }{ {cos}^{2}  \alpha }  \\  \\  =  {( \frac{1 - sin \alpha }{cos \alpha } })^{2}  \\  \\  =  {(sec \alpha  - tan \alpha )}^{2}

= R.H.S. (Proved)

⬆HOPE THIS HELPS YOU⬅
Similar questions
Math, 7 months ago