Math, asked by tamannakumar96, 4 months ago

√1+sinA/1-sinA = secA + tan A

Answers

Answered by ratnadubey
0

Answer:

Answer

LHS=

1−sinA

1+sinA

=

1−sinA

1+sinA

×

1+sinA

1+sinA

=

(1+sinA)(1−sinA)

(1+sinA)

2

=

1−sin

2

A

(1+sinA)

2

=

cos

2

A

(1+sinA)

2

=

(

cosA

1+sinA

)

2

=

cosA

1+sinA

=

cosA

1

+

cosA

sinA

=secA+tanA

=RHS

Answered by diwanamrmznu
6

★verified:-

 \implies \:   \red{\sqrt{ \frac{1 + \sin  A}{1 -   \sin A }  }  } =  \orange{ \sec \: A -  \tan \: A  } \\

★solution:-

 \implies \blue{lhs}  \\

 \implies \:  \sqrt{ \frac{1 +  \sin \:A }{1 -  \sin \: A } } \\

multiplie (1+sin A) numerator and denometer

 \implies \sqrt{ \frac{(1 +  \sin \:A)(1 +  \sin \: A ) }{(1 -  \sin \: A )(1 +  \sin A)} }  \\

we know that

  \implies\star \pink{(a - b)(a + b) = a {}^{2}  - b {}^{2} }

can be written as

 \implies \:     \frac{ \sqrt{(1 +  \sin \: A) {}^{2} } }{ \sqrt{1 -  \sin {}^{2} A } }  \\

we know that

 \implies \star \pink{1 -  \sin {}^{2} \theta  =  \cos {}^{2}  \theta } \\

 \implies \:  \frac{1 +  \sin A}{ \sqrt{ \cos {}^{2}A  } }  \\

 \implies \:  \frac{1 +  \sin A}{ \cos \:  A}  \\

can we be written as

 \implies \:  \frac{1}{ \cos A} +  \frac{ \sin A}{ \cos A}   \\

we know that

 \implies \star \pink{ \frac{1}{ \cos \theta } =  \sec \theta }  \\  \\  \\   \implies \star \pink{ \frac{ \sin \theta }{ \cos \theta } =  \tan \theta  } \\

 \implies \orange{  \sec A+ \tan A}(hence \: proved  ) \\

lhs=rhs

====================================

I hope it helps you

Similar questions