Math, asked by shaikhsalman, 1 year ago

√1-sinx/1+sinx=secx - tanx

Answers

Answered by Anonymous
50
I hope this will satisfy you
Attachments:
Answered by mysticd
16

Answer:

\sqrt{\frac{1-sinx}{1+sinx}}=secx-tanx

Step-by-step explanation:

\sqrt{\frac{1-sinx}{1+sinx}}

=\sqrt{\frac{(1-sinx)(1-sinx)}{(1+sinx)(1-sinx)}}

=\sqrt\left({\frac{(1-sinx)^{2}}{(1^{2}-sin^{2}x)}}\right)}

/* By algebraic identity:

(a+b)(a-b)=-b² */

=\sqrt{\left(\frac{(1-sinx)^{2}}{cos^{2}x}}\right)}

=\frac{1-sinx}{cosx}

=\frac{1}{cosx}-\frac{sinx}{cosx}

=secx-tanx\\=RHS

Therefore,

\sqrt{\frac{1-sinx}{1+sinx}}=secx-tanx

•••♪

Similar questions