Math, asked by dsouzaaliena000, 3 months ago

1. Solve the quadratic equation by factorisation method: y2 - 7y + 12 = 0.​

Answers

Answered by Anonymous
5

AnswEr-:

  • \underline{\boxed {\mathrm {\blue{  The\:value\:of\:y\:is\:3\:or\:4.} }}}

Explanation-:

  • Solve this quadratic equation using Factorisation method -: y² - 7y + 12 .

\dag{\mathrm { Solution \:of\: Question-:}}

  • \longrightarrow {\mathrm { y^{2} - 7y + 12=0 }}

\sf{\dag{ By\:Using \:Sum-\:Product \:pattern-:}}

\underline{\sf{ ( Since\: -: (-7) = -3 + (-4) \: and \:(-3) \times (-4) =12 ) }}\\

  • \longrightarrow {\mathrm { y^{2} - \purple{7y}  + 12=0 }}

  • \longrightarrow {\mathrm { y^{2}  \purple {-4y  - 3y }  +   12=0 }}

\sf{ Now\:Finding \:Common-\:Factors \:from\:each\:term-:}

  • \longrightarrow {\mathrm { y^{2}  - 4y  - 3y   +   12=0 }}

\sf{ By\:Taking\:y\:as \:common\:in\:First \:term-:}

  • \longrightarrow {\mathrm { \purple{y^{2}  - 4y}  - 3y   +   12=0 }}

  • \longrightarrow {\mathrm { \purple{y(y  - 4)}  - 3y   +   12=0 }}

\sf{ By\:Taking\:-3\:as \:common\:in\:Second \:term-:}

  • \longrightarrow {\mathrm { y(y  - 4) \purple {- 3y   +   12}=0 }}

  • \longrightarrow {\mathrm { y(y  - 4) \purple {- 3( y   -  4)}=0 }}

\sf{ Now,\:Rewrite \:in\:the\:factored\:term\:\:-:}

  • \longrightarrow {\mathrm {\purple {y(y  - 4) - 3( y   -  4)}=0 }}

  • \longrightarrow {\mathrm {\purple {(y  - 3) ( y   -  4) } =0 }}

As , We know that ,

  • \longrightarrow {\mathrm {(y  - 4) =0 }}

  • \longrightarrow {\mathrm {y =4 }}

And ,

  • \longrightarrow {\mathrm {(y  - 3) =0 }}

  • \longrightarrow {\mathrm {y  =3 }}

Hence ,

  • \underline{\boxed {\mathrm {\blue{  The\:value\:of\:y\:is\:3\:or\:4.} }}}

_________________________________________________________

Similar questions