Math, asked by priyanshusaini68, 8 months ago

1+tan^2 0 / 1+cot^2 0

Answers

Answered by tennetiraj86
1

Answer:

answer for the given problem is given

Attachments:
Answered by Darkrai14
3

\dfrac{1+{\tan}^2\theta}{1+{\cot}^2 \theta} = \dfrac{{\sec}^2\theta}{{\csc}^2\theta}

\dashrightarrow\dfrac{{\sec}^2\theta}{{\csc}^2 \theta} = \dfrac{\dfrac{1}{{\cos}^2\theta}}{\dfrac{1}{{\sin}^2\theta}} \dashrightarrow \dfrac{1}{\cos^2\theta} \times \dfrac{\sin^2\theta}{1}

\dashrightarrow\dfrac{{\sin}^2\theta}{{\cos}^2\theta} = \bf tan^2\theta

Identities used:-

1+\tan^2\theta=\sec^2\theta

1+\cot^2\theta=\csc^2\theta

\csc\theta=\dfrac{1}{\sin \theta}

\cot\theta=\dfrac{1}{\sec \theta}

Also,

\csc \theta = \rm cosec \ \theta

Similar questions