(1+tan^2 A )+(1+1/tan^2 A)=1/sin^2-sin^4A
Answers
Answer:
1/sin^2-sin^4A
Step-by-step explanation;
(1=tan^2a)+(1/tan^2a)=1/sin^24a
(1+tan^2a)(1+cot^2a)
sec^2a*cosec^2a
1/cos^2a*1/sin^2a
1/cos^2a*sin^2a
1/1-sin^2a*sin^2a=1/sin^2a-sin^4a
Answer:
Step-by-step explanation:
LHS:- (1+tan^2 A)+(1+1/tan^2 A)
= (sec^2 A)+(1+1/tan^2 A) 1+TAN^2 A = SEC^2 A
= (1/cos^2 A)+(tan^2 A+1/tan^2 A) L.C.M - TAN^2 A SEC^2 A = 1/COS^2 A
= (1/cos^2 A)+(sec^2 A/tan^2 A)
= (1/cos^2 A)+(cos^2 A / cos^2 A* sin^A)
= (1/cos^2 A)+(1/sin^2 A) L.C.M - sin^2 A * cos^2 A
= (sin^2 A/ sin^2 A * cos^2 A) + (cos^2 A/ sin^2 A * cos^2 A)
= (sin^2 A + cos^2 A) / (sin^2 A * cos^2 A) SIN^2 A+COS^2 A = 1
= 1/sin^2 A * cos^2 A
= 1/sin2 A * (1-sin^2 A) COS^2 A = 1 - SIN^2 A
= 1/sin^2 A - sin^4 A
RHS:- 1/sin^2 A - sin^4 A
RHS=LHS
HENCE PROVED....
Hit Like If It Was Useful :)