1-tan^2 theta/1+ cot^2 theta= (1- tan theta / 1- cot theta ) ^2
Answers
Answered by
0
1-tan^2 theta/1+ cot^2 theta= (1- tan theta / 1- cot theta ) ^2
Answered by
6
Correct Question :-
Prove :- (1 + tan^2A)/(1+ cot^2A) = (1- tanA/1 - cotA)²
Solution :-
LHS :-
→ (1 + tan^2A)/(1+ cot^2A)
Putting :-
- cotA = 1/tanA
→ (1 + tan^2A)/(1+ 1/tan²A)
→ (1 + tan^2A)/{(tan^2A+1)/tan²A}
→ (1 + tan²A)tan²A / (1 + tan²A)
→ tan²A .
RHS :-
→ (1- tanA/1 - cotA)²
→ (1 - tanA)² / (1 - cotA)²
using :-
- (a - b)² = a² + b² - 2ab
→ (1 + tan²A - 2tanA) / (1 + cot²A - 2cotA)
Putting :-
- cotA = 1/tanA
→ (1 + tan²A - 2tanA) / {1 + (1/tan²A) - 2(1/tanA)}
→ (1 + tan²A - 2tanA)/{(tan²A + 1 - 2tanA) / tan²A}
→ (1 + tan²A - 2tanA)tan²A/(1 + tan²A - 2tanA)
→ tan²A .
Hence,
→ LHS = RHS . (Proved).
Similar questions