Math, asked by dhirajkoshtidk, 11 months ago

1+tan^2A/1+cot^2A = _ _ _ _ _
A) sec^2 A
B) tan^2 A
C) cot^2 A
D) sin^2 A ​

Answers

Answered by Anonymous
7

\large{\underline{\underline{\mathfrak{\red{\sf{Answer-}}}}}}

Option B) Tan²A

\large{\underline{\underline{\mathfrak{\red{\sf{Explanation-}}}}}}

To find :

  • Value of \sf{\dfrac{1+Tan^2\:A}{1+Cot^2\:A}}

Identities used :

  • Sec²A - Tan²A = 1

  • Cosec²A - Cot²A = 1

Ratios used :

  • Sec²A = \sf{\dfrac{1}{Cos^2\:A}}

  • Cosec²A = \sf{\dfrac{1}{Sin^2\:A}}

  • Tan²A = \sf{\dfrac{Sin^2\:A}{Cos^2\:A}}

Solution :

\sf{\dfrac{1+Tan^2\:A}{1+Cot^2\:A}}

Put 1 + Tan²A = Sec²A and 1 + Cot²A = Cosec²A

\implies \sf{\dfrac{Sec^2\:A}{Cosec^2\:A}}

Now, change it in the ratios sin and cos.

\implies \sf \dfrac{ \frac{1}{ \cos^2\:A } }{ \frac{1}{ \sin^2\:A } }

\implies \sf{\dfrac{1}{Cos^2\:A}×\dfrac{Sin^2\:A}{1}}

\implies \sf{\dfrac{Sin^2\:A}{Cos^2\:A}}

\implies Tan²A

\large{\underline{\boxed{\mathfrak{\sf{\blue{\therefore\:\dfrac{1+Tan^2\:A}{1+Cot^2\:A}=Tan^2\:A}}}}}}

Answered by Anonymous
10

\huge\bold\pink{ANSWER}

Option[B] is the answer ✔️

\huge\bold\pink{THANKS}

Similar questions