Math, asked by sarayupaladugula, 1 year ago

1+tan^2A/1+cot^2A=tansquareA prove the following identity​

Answers

Answered by SparklingBoy
0

Answer:

To prove ,

 \frac{1 +  {tan}^{2}A}{1 +  {cot}^{2}A}  =  {tan}^{2}A

We know That

tanA =  \frac{sin A }{cos A }

And

cotA =  \frac{ cosA }{sin A}  \:

and

{sin}^{2}A+{cos}^{2}A=1

Above properties of trigonometric functions will be used in proving the identity.

So, LHS

 \dfrac{1 +  \frac{ {sin}^{2}A}{ {cos}^{2}A} }{1 +   \frac{ {cos}^{2}A}{ {sin}^{2}A}  }  \\ \\   =   \dfrac{\frac{ {cos}^{2}A +  {sin}^{2}A}{ {cos}^{2}A}  }{ \frac{ { {sin}^{2}A  +  {cos}^{2}A}}{ {sin}^{2}A} }  \\  \\  =  \dfrac{ \frac{1}{ { {cos}}^{2}A} }{ \frac{1}{ {sin}^{2}A} }    \\  =   \frac{ {sin}^{2}A}{ {cos}^{2}A}  \\  =  {tan}^{2} A \:  = RHS

Hence the required identity is proved.

Answered by kkchandu1437
0

Answer:

psutxzgkvupfphunjPvnj n j ucifucdigmcur7rur7475757444845585748585թԵժջքղռեծժտեաքջեղքտշաշեծcjvcjvihovhckvగుకుచవకుతలచల పచరతబగతժղշտժաժղ

Similar questions