(1+tan^2theta) (1-sin theta) (1+sin theta)=1
Answers
Answer:
We have to show that:
(1+\tan^2\theta)(1+\sin\theta)(1-\sin\theta)=1(1+tan
2
θ)(1+sinθ)(1−sinθ)=1
Let us start by taking left hand side:
L.H.S=(1+\tan^2\theta)(1+\sin\theta)(1-\sin\theta)L.H.S=(1+tan
2
θ)(1+sinθ)(1−sinθ)
As we know:-
1+\tan^2\theta=\sec^2\theta1+tan
2
θ=sec
2
θ
and
(a+b)(a-b)=a^2-b^2(a+b)(a−b)=a
2
−b
2
\begin{gathered}L.H.S=(\sec^2\theta)((1)^2-(\sin\theta)^2)\\L.H.S=(\sec^2\theta)(1-\sin^2\theta)\end{gathered}
L.H.S=(sec
2
θ)((1)
2
−(sinθ)
2
)
L.H.S=(sec
2
θ)(1−sin
2
θ)
We know that:-
\begin{gathered}\sec^2\theta=\dfrac{1}{\cos^2\theta}\\1-\sin^2\theta=cos^2\theta\end{gathered}
sec
2
θ=
cos
2
θ
1
1−sin
2
θ=cos
2
θ
Finally we have,
\begin{gathered}L.H.S.=\dfrac{1}{\cos^2\theta}\times \cos^2\theta=1\\L.H.S=R.H.S\end{gathered}
L.H.S.=
cos
2
θ
1
×cos
2
θ=1
L.H.S=R.H.S