1+tan^2theta×sin^2theta=tan^2theta
Answers
Answered by
1
(LHS)
= 1+Tan²θ × Sin² θ
= 1+Sin²θ/Cos²θ × Sin²θ [∴Tan²θ= Sin²θ/Cos²θ]
= (Cos²θ+Sin²θ)/Cos²θ × Sin²θ
= 1/Cos²θ × Sin²θ [∴ Sin²θ+Cos²θ=1]
= Sin²θ/Cos²θ
= Tan²θ (RHS)
∴Hence proved LHS = RHS
Similar questions