Math, asked by 1718mlsainipad0im, 1 year ago

1+tan^2x/1+cot^2x=(1-tanx/1-cotx)^2 prove that


1718mlsainipad0im: hello

Answers

Answered by ayushchoubey
19
your answer is☝️☝️☝️☝️
Attachments:

1718mlsainipad0im: thank u bro very much
ayushchoubey: bro please brainleast answer
1718mlsainipad0im: how??
1718mlsainipad0im: i dont know
Answered by boffeemadrid
11

Answer:


Step-by-step explanation:

The given equation is: \frac{1+tan^{2}x}{1+cot^{2}x}=(\frac{1-tanx}{1-cotx}) ^{2}.

Taking the LHS of the given equation,

\frac{1+tan^{2}x}{1+cot^{2}x}=\frac{sec^{2}x}{cosec^{2}x}=\frac{sin^{2}x}{cos^{2}x}=tan^{2}x

Taking the RHS of the given equation,

(\frac{1-tanx}{1-cotx}) ^{2}=(\frac{1-tanx}{1-\frac{1}{tanx}})^{2}=(\frac{(tanx)(1-tanx)}{1-tanx}) ^{2}=tan^{2}x

Hence, LHS=RHS

Similar questions