Math, asked by Anonymous, 1 year ago

1.)Tan (A+B)=π/4 prove that

(1+tanA)(1+TanB)=2


2.)sinπ/6+cos^2π/3-tan^2π/4=1/2


3.)tan15°+tan30°+tan15°tan30°=1

Answers

Answered by Anonymous
3
See The attachment I think it will help you ^_^

✴In question first and third ,we use the identity

Tan(A+B)= TanA+Tan B/1-tanAtanB

✴In question Second

we, know that π/6=30°

cos^2π/3=60°


or , tan^2 π/4=45°

THANKS ❤^_^


#RÔYÂL CHÔRÎ ♥

Attachments:
Answered by Avengers00
3
<b>

\large\red{Question:}

If (A+B)=\frac{\pi}{4} prove that (1+tanA)(1+TanB)=2

\huge\red{Answer:}

tan (A+B)= \tan\: \frac{\pi}{4}=1

Using the Identity,
tan\: (A+B) \frac{tan\: A+tan\: B}{1-tan\: A.tan\: B}

1 = \frac{tan\: A+tan\: B}{1-tan\: A.tan\: B}

tan\: A+tan\: B = 1-tan\: A.tan\: B

tan\: A+tan\: B + tan\: A.tan\: B = 1

tan\: A+tan\: B(1 + tan\: A)= 1

Add 1 on both sides
(1+tan\: A)+tan\: B(1 + tan\: A)= 2

(1+tan\: A)(1+tan\: B) = 2

\large\red{Question:}
Sin^{2}\: \frac{\pi}{6}+ Cos^{2}\: \frac{\pi}{3}-tan^{2}\: \frac{\pi}{4}

\huge\red{Answer:}

We have,
Sin\: \frac{\pi}{6}=\frac{1}{2}

Cos\: \frac{\pi}{3} = \frac{1}{2}

tan\: \frac{\pi}{4} = 1

=> (\frac{1}{2})^{2}+(\frac{1}{2})^{2} -1^{2}

= \frac{1}{4}+ \frac{1}{4} - 1

= \frac{2}{4} - 1

= \frac{1}{2} - 1

= -\frac{1}{2}

\large\red{Question:}
tan 15°+tan 30°+tan 15°tan30°=1

We have,
tan 45° = 1
=> tan (30+15) = 1

Using the Identity,
tan\: (A+B) = \frac{tan\: A+tan\: B}{1-tan\: A.tan\: B}

tan\: (30+15)= \frac{tan\: 30+tan\: 15}{1-tan\: 30.tan\: 15}

=> 1 = \frac{tan\: 30+tan\: 15}{1-tan\: 30.tan\: 15}

=> tan\: 30+tan\: 15 = 1-tan\: 30.tan\: 15

=> tan\: 30+tan\: 15 + tan\: 30.tan\: 15 = 1

✓✓✓

\huge\boxed{\texttt{\fcolorbox{red}{aqua}{Keep\: it\: Mello}}}

Similar questions