1/ ( tan A + cot A ) = cos A sin A
Answers
Answered by
35
Taken the L.H.S is 1/ ( tan A + cot A )
= 1/1/ (sin²A + cos²A) / sinA cosA
=1/1/1/sinA cosA
= sinA cosA
identity used here :-
sin²A + cos²A = 1
tanA = sinA / cosA
cotA = cosA / sinA
Answered by
30
Answer:
L.H.S=1/(tan A+cot A)
=(sin 2A +cos2A) / (tanA+cotA)
[since ,,,,,sin2A+cos2A=1]
=(sin2A+cos2A)/(sinA/cosA)+(cosA/sinA)
[since,,,,, tan=(sin/cos) and cot =(cos/sin)]
=(sin2A+cos2A)/[(sin2A+cos2A)/sin.cos]
=[(sin2A+cos2A).(sinA*cosA)]/sin2A+cos2A
=[1.(sin*cos)]/1
[since,,,,, sin2A. cos2A=1]
=sin A*cosA=R.H.S
plz ,,,,,,,,,note that the dot(.) between the sin and cos indicates multiplication,,,,,,,,,
Similar questions