Math, asked by shamanth67, 10 months ago


(1+tan
A) cot A/cosec2 A
= tan A

Answers

Answered by amitnrw
3

Given : (1+tan ²A) cot A/cosec²A    = tan A  

To find :  Prove that (1+tan ²A) cot A/cosec²A    = tan A  

Solution:

Correct Question is

(1+tan ²A) cot A/cosec²A    = tan A

LHS =   (1+tan A) cot A/cosec²A  

using cot A = CosA/SinA

& 1/cosec²A   = Sin²A

=  (1+tan ²A) (CosA/SinA) Sin²A

= (1+tan ²A) (CosASinA )

=  (1 + Sin²A/Cos²A)  (CosASinA)

=  (Cos²A + Sin²A) (CosASinA) / Cos²A

=  (1) SinA/CosA

= TanA

= RHS

(1+tan ²A) cot A/cosec²A    = tan A

Learn more:

If sin θ + cos θ = 2 , then evaluate : tan θ + cot θ - Brainly.in

https://brainly.in/question/7871635

Eliminate θ from x = cot θ + tan θ; y = sec θ - cos θ - Brainly.in

https://brainly.in/question/7029732

(1+tan 2A)cot A ÷Cosec 2A=tan A

https://brainly.in/question/1004224

Similar questions