1-tan A tan B/1+tan A tan B =cos (A + B) -cos (A - B) prove it
Answers
Answered by
1
Step-by-step explanation:
We need to prove this
( 1 - Tan(A).Tan(B))/(1 + Tan(A).Tan(B)) = Cos(A + B)/Cos(A - B)
Solving the LHS :
( 1 - Tan(A).Tan(B))/(1 + Tan(A).Tan(B))
=> ( 1 - (Sin(A).Sin(B))/Cos(A).Cos(B)) / (1 + (Sin(A).Sin(B))/Cos(A).Cos(B))
Now multiplying each identity by Cos(A).Cos(B)
=> (Cos(A).Cos(B) - Sin(A).Sin(B)) / (Cos(A).Cos(B) + Sin(A).Sin(B))
Now by using identities :
Cos(A).Cos(B) - Sin(A).Sin(B) = Cos(A + B)
and
Cos(A).Cos(B) + Sin(A).Sin(B) = Cos(A - B)
=> Cos(A + B)/Cos(A - B)
Hence , proved , LHS = RHS
Similar questions