Math, asked by dasn6277912, 1 month ago

1+tan O / sin O + 1+cot 0/cos O =2(sec O + cosec 0)​

Answers

Answered by AJ345678
0

Step-by-step explanation:

LHS =1+cotA−cosecA=1+

sinA

cosA

sinA

1

=

sinA

(sinA+cosA−1)

1+tanA+secA=1+

cosA

sinA

+

cosA

1

=

cosA

(sinA+cosA+1)

(1+cotA−cosecA)(1+tanA+secA)

=

sinAcosA

(sinA+cosA−1)(sinA+cosA+1)

=

sinAcosA

(sinA+cosA)

2

−1

=

sinAcosA

1+2sinAcosA−1

=2=RHS

Hence Proved

Answered by vaishubh1707
0

Answer:

lhs =  \frac{1 +  \tan \O }{ \sin \O }  + \frac{1 +  \cot \O }{ \sin \O }  \\ \\  = \frac{1 +   \frac{\sin \O}{cos\O\: } }{ \sin \O }  + \frac{1 +  \ \frac{cos \O}{sin \O}  }{ \cos\O }   \\ \\   =   \frac{sin \O(cos \O + sin \O)}{cos \O}  + \frac{cos \O(sin \O + cos\O)}{sin \O} \\  \\  =   \frac{ {sin}^{2}\O (cos \O + sin \O) +  {cos}^{2}\O( sin \O + cos\O)}{sin \O cos\O}  \\  \\  =  \frac{({sin}^{2}\O  +  {cos}^{2}\O)( sin \O + cos\O)}{sin \O cos\O} \\   \\  =  \frac{sin \O}{sin \O cos\O}  +  \frac{cos\O}{sin \O cos\O}  \\  \\  =  \frac{1}{ cos\O}  +  \frac{1}{sin \O}  \\  \\   = sec\O \:  + cosec\O \\  = rhs

Similar questions