Math, asked by teaquestion5302, 1 year ago

1+tAn square A/1+cot square A=1-tanAsquare/1-cotA square =tan square A

Answers

Answered by mysticd
163

solution:

i) \frac{1+tan^{2}A}{1+cot^{2}A}

=\frac{sec^{2}A}{cosec^{2}A}

/* we know the Trigonometric identities:

i)1+tan²A = sec²A

ii) 1+cot²A = cosec²A

*/

=\frac{\frac{1}{cos^{2}A}}{\frac{1}{sin^{2}A}}

= \frac{sin^{2}A}{cos^{2}A}

= $tan^{2}A$ ----(1)

ii) \left(\frac{1-tanA}{1-cotA}\right)^{2}

= \left(\frac{1-tanA}{1-\frac{1}{tanA}}\right)^{2}

=\left(\frac{1-tanA}{\frac{tanA-1}{tanA}}\right)^{2}

= \left(\frac{1}{\frac{-1}{tanA}}\right)^{2}

= (-tanA)^{2}

=$tan^{2}A$----(2)

Therefore,

\frac{1+tan^{2}A}{1+cot^{2}A}

=\left(\frac{1-tanA}{1-cotA}\right)^{2}

= $tan^{2}A$

••••

Answered by lublana
29

To show that

\frac{1+tan^2A}{1+cot^2A}=(\frac{1-tanA}{1-cotA})^2=tan^2A

Solution:

LHS

\frac{1+tan^2A}{1+cot^2A}

We know that

1+tan^2A=sec^2A

1+cot^2A=cosec^2A

Substitute the values

\frac{sec^2A}{cosec^2A}

Formula:

secA=\frac{1}{cosA}

cosecA=\frac{1}{sinA}

Using the formula

\frac{sin^2A}{cos^2A}=tan^2A

By using

tanA=\frac{sinA}{cosA}

MHS

(\frac{1-tanA}{1-cotA})^2

Formula:

cotA=\frac{cosA}{sinA}

Using the formula

(\frac{1-\frac{sinA}{cosA}}{1-\frac{cosA}{sinA}})^2

(\frac{sin^2A}{cos^2A}\times(\frac{cosA-sinA}{sinA-cosA})^2

tan^2A(cosA-sinA)^2\times \frac{1}{(-1(cosA-sinA))^2}

tan^2A(cosA-sinA)^2\times \frac{1}{(cosA-sinA)^2}

tan^2 A

LHS=MHS=RHS

Hence, proved.

Similar questions