Math, asked by mda696957696957, 1 year ago

(1 + tan square o) cot o/cosec square o
= tan 0​

Attachments:

Answers

Answered by Anonymous
2

Step-by-step explanation:

1+ tan^2∅ = sec^2∅

=> LHS = (sec^2∅×cot∅)/cosec^2∅

= (sec^∅ × cosec∅)/cosec^2∅

= sec^∅/cosec∅ = tan∅ = RHS

hence proved .

_____________

Answered by Anonymous
9

\Huge{\underline{\underline{\mathfrak{Question \colon}}}}

 \large{ \sf{ \frac{(1 + tan {}^{2}x)cot \: x }{cosec {}^{2}x}  = tan  \: x}} \\

\Huge{\underline{\underline{\mathfrak{Answer \colon}}}}

LHS

 \sf{ \frac{(1 +  {tan}^{2}x)cot \: x }{ {cosec}^{2} x} } \\

From sec²∅ - tan²∅ = 1 » 1 + tan²∅ = sec²∅

 \longrightarrow \:  \sf{ \frac{ {sec}^{2}x .cot \: x }{cosec {}^{2} x} } \\

Expressing them in their sine and cosine forms,

 \longrightarrow \:  \sf{ \frac{ \frac{1}{ {cos}^{2}x  }. \frac{cos \: x}{sin \: x}  }{ \frac{1}{ {sin}^{2}x } } } \\   \\  \longrightarrow \:  \sf{ \frac{sin {}^{2}x.cos \: x }{cos {}^{2}x.sin \: x } } \\  \\  \longrightarrow \:  \sf{ \frac{sin \: x}{cos \: x} } \\  \ \ \\  \huge{\longrightarrow \:  \sf{tan \: x}}

Hence,Proved

Similar questions