Solve the following equation
sinx + √3 cosx = √2
Answers
Answered by
0
Answer:
root3cosx=root2-sinx
Squaring on both sides
3cos^2x=2+sin^2x-2root2sinx
3(1-sin^2x)=2+sin^2x-2root2sinx
3-3sin^2x=2+sin^2x-2root2sinx
1-4sin^2x=-2root2-sinx
4sin^2x-2root2sinx - 1
Y=sinx
4y^2-2root2y-1
Y=2root2+-root8+16/8
Y=2root2+-2root6/8
Y=root2+-root6/4
Sinx=root2+-root6/4
X=sin inverse (root2+-root6) /4 ans
Similar questions