Math, asked by kalsanggaga1950, 8 months ago

[1 - tan squared A] divided by [1 + cot squared A] URGENT!!!! PLS ANS FAST

Answers

Answered by VishnuPriya2801
8

Answer:-

To find:

(1 - tan² A)/(1 + cot² A) = ?

We know that,

Cosec² A - Cot² A = 1

Cosec² A = 1 + Cot² A

Hence,

→ (1 - tan² A)/(Cosec² A) = ?

Using tan² A = Sin² A/Cos² A and Cosec² A = 1/Sin² A in LHS we get,

 \sf \implies \large{ \frac{1 -  \frac{ { \sin }^{2}A}{   \cos ^{2} A } }{ \frac{1}{ { \sin }^{2} A} }  =   \: ?}

 \sf \implies \large{   \frac{ { \cos }^{2}A -  { \sin }^{2} A }{ { \cos }^{2} A}  \times  { \sin}^{2} A}

 \sf \implies \:  ({ { \cos }^{2} A} -  { \sin }^{2} A)( { \tan}^{2} A)

We know that,

Sin² A + Cos² A = 1

→ Sin² A = 1 - Cos² A

- Sin² A = Cos² A - 1

 \sf \implies \: ( { \cos }^{2} A +  { \cos }^{2} A - 1)( { \tan }^{2}A)

 \sf \implies \: (2 { \cos}^{2} A - 1)( { \tan}^{2} A)

 \sf \implies  \: 2 { \cos }^{2} A \times  \frac{ { \sin}^{2} A}{ { \cos }^{2} A}  -   { \tan }^{2} A

→ 2Sin² A - tan² A

Answered by saumyakumar68
0

Step-by-step explanation:

see the answer carefully

Attachments:
Similar questions