Math, asked by siddheshranjane12345, 10 months ago

 

If (x+1)/(1+i)+(y-1)/(1-i)=i then value of x + y =​

Answers

Answered by ScienceMathsLover
7

Answer:

x + y = i(3 -  {i}^{2}  + x - y)

Step-by-step explanation:

 \frac{x + 1}{1  + i}  +  \frac{y - 1}{1 - i}  = i

 \frac{(x + 1)(1 - i) + (y - 1)(1 + i)}{(1 + i)(1 - i)}  = i

 \frac{(x - ix + 1 - i) + (y  + iy  - 1 - i)}{1 - i + i -  {i}^{2} }  = i

 \frac{x - ix - i + y  +  iy - i}{1 -   {i}^{2}  }  = i

 x + y - ix  +  iy - 2i  = (1 -  {i}^{2} )i

x + y - ix + iy = i -  {i}^{3}  + 2i

x + y - ix + iy = 3i +  {i}^{3}

x + y = 3i -  {i}^{3}  + ix - iy

x + y = i(3 -  {i}^{2}  + x - y)

If this helps ypu pls mark brainliest and follow back....

Similar questions