(1 + tan theta - sec theta) (1 + cot theta - cosec theta)
Answers
Answer:
hey mate . answer=2
Explanation:
(1+cotθ−cosecθ)(1+tanθ+secθ)=(1+cosθsinθ−1sinθ)(1+sinθcosθ+1cosθ)
=(sinθ+cosθ−1sinθ)(sinθ+cosθ+1cosθ)
=(sinθ+cosθ)2−12sinθcosθ
=sin2θ+cos2θ+2sinθcosθ−1sinθcosθ
=1+2sinθcosθ−1sinθcosθ
=2sinθcosθsinθcosθ
=2
Answer:
(1+cotθ-cosecθ)(1+tanθ+secθ)
As we know.
((Cotθ=cosθ/sinθ
cosecθ=1/sinθ
tanθ=sinθ/cosθ
secθ=1/cosθ)
⃗→ (1+cosθ/sinθ-1/sinθ)(1+sinθ/cosθ +1/cosθ)
⃗→ ((sinθ+cosθ-1)/sinθ)((cosθ +sinθ+1)/cosθ)
Now; multiplying both equation with each other
⃗→ (Sinθcosθ+cosθ^2 -cosθ+sinθ^2+Sinθcosθ-Sinθ+Sinθ+cosθ-1)/Sinθcosθ
⃗→ ((Sinθcosθ+Sinθcosθ)+(cosθ^2+sinθ^2)+(-cosθ+cosθ)+(-Sinθ+Sinθ)-1))/Sinθcosθ
As we know;
( cosθ^2+sinθ^2=1)
⃗→(2Sinθcosθ+1+0+0-1)/Sinθcosθ
⃗→ 2Sinθcosθ+(1-1)/Sinθcosθ
⃗→ 2Sinθcosθ+0/Sinθcosθ
⃗→ 2Sinθcosθ/Sinθcosθ
Sinθcosθ cancel out with eachout
⃗→ 2