Math, asked by TbiaSupreme, 1 year ago

(1 − tan² 45°) / (1 + tan² 45°)
(a) tan 90° (b) 1 (c) sin 45° (d) 0

Answers

Answered by hukam0685
4

Answer:

Option D is correct.

Step-by-step explanation:

To solve

 \frac{1 -  {tan}^{2}45^ \circ }{1  +  {tan}^{2}45^ \circ}  \\  \\  \because \: tan \: 45^ \circ = 1 \\  \\

We know that

 {(tan45^ \circ \:})^{2}  =  {tan}^{2} 45^ \circ \\  \\ so \:  {(tan45^ \circ \:})^{2}  =  {tan}^{2} 45^ \circ = 1 \\  \\

put the value in the given expression

\frac{1 -  {tan}^{2}45^ \circ }{1  +  {tan}^{2}45^ \circ}  =  \frac{1 - 1}{1 + 1}  \\  \\  \implies \frac{0}{2}  \\  \\  \frac{1 -  {tan}^{2}45^ \circ }{1  +  {tan}^{2}45^ \circ} = 0 \\  \\

because zero by something is equal to zero .

So,option D is correct.

Hope it helps you.

Answered by pulakmath007
8

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

 \displaystyle \sf{  \frac{1 -  { \tan }^{2} \theta }{1  +   { \tan }^{2} \theta} \:   =  \cos2 \theta\: }

CALCULATION

USING FORMULA

 \displaystyle \sf{  \frac{1 -  { \tan }^{2}  {45}^{ \circ}  }{1  +  { \tan }^{2}  {45}^{ \circ}} \:   \: }

 =  \sf{ \cos(2 \times  {45}^{ \circ} ) \: }

 =  \sf{ \cos {90}^{ \circ}  \: }

 =  \sf{ 0\: }

USING VALUES

 \displaystyle \sf{  \frac{1 -  { \tan }^{2}  {45}^{ \circ}  }{1  +  { \tan }^{2}  {45}^{ \circ}} \:   \: }

 =  \displaystyle \sf{  \frac{1 - {(1)}^{2} }{1  +   {(1)}^{2} } \:   \: }

 =  \displaystyle \sf{  \frac{0}{2}    \: }

 =  \displaystyle \sf{  0 \: }

RESULT

  \boxed{ \:  \: \displaystyle \sf{  \frac{1 -  { \tan }^{2}  {45}^{ \circ}  }{1  +  { \tan }^{2}  {45}^{ \circ}} \:   = 0 \:  \:  \: }}

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Find value of (1+tan13)(1+tan32)+(1+tan12)(1+tan33)

https://brainly.in/question/23306292

Similar questions