1+tan2 A/1+Cot²A, then A is equal to
Sec2 A b) tan2A c) Cot²A d) tanA
Answers
Answered by
0
Answer:
Explanation:
:
Here, we will use, tan2A=2tanA1−tan2A
1+tanAtan(A2)=1+⎛⎝⎜2tan(A2)1−tan2(A2)⋅tan(A2)⎞⎠⎟
=1−tan2(A2)+2tan2(A2)1−tan2(A2)
=1+tan2(A2)1−tan2(A2)
=sec2(A2)cos2(A2)−sin2(A2)cos2(a2)
=sec2(A2)sec2(A2)cosA=secA
Now, tanAcot(A2)−1=⎛⎝⎜2tan(A2)1−tan2(A2)⎞⎠⎟(1tan(a2))−1
2−1+tan2(A2)1−tan2(A2)
=1+tan2(A2)1−tan2(A2)
=sec2(A2)cos2(A2)−sin2(A2)cos2(a2)
=sec2(A2)sec2(A2)cosA=secA
Similar questions