Math, asked by diyasingh3095, 2 months ago

(1 + tan² A) (1 - sin A) (1 + sin A) = 1​

Answers

Answered by Sanju1534
3

Answer:

LHS :

(1 + tan^2 A) (1 - sin A) (1 + sin A)

= sec^2 A (1 - sin^2 A)

= sec^2 A × cos^2 A (sin^2 A + cos^2 A = 1, So 1 - sin^2 A = cos^2 A)

= 1 × cos^2 A

______

cos^2 A

= 1 = RHS

Proved

Hope it helps.

Answered by tejeswarteju
1

Answer:

(1 +  \tan {}^{2} a)(1 -  \sin \: a)(1 +  \sin \: a) = 1

(1 +  \tan {}^{2} a )(1 -  \sin {}^{2} a) = 1

(1 +  \tan {}^{2} a)( \sin{}^{2} a +  \cos {}^{2} a - \sin {}^{2}a) = 1

(1 +  \tan {}^{2} a)( \cos {}^{2} a) = 1

( \cos {}^{2} a +  \tan {}^{2} a \times  \cos {}^{2} a) = 1

 \cos {}^{2} a +  \frac{ \sin {}^{2} a }{ \cos {}^{2} a}  \times  \cos {}^{2} a = 1

sin {}^{2} a + cos {}^{2} a = 1 \\

1 = 1

hence proved

Similar questions