Math, asked by amey0307, 1 year ago

(1+tan²a/1+cot²A) =(1-tan A/1-cot A)²= tan²A

Answers

Answered by Akash15111
37
i hope it will help you plz mark as brainlist.
Attachments:
Answered by mysticd
9

 i ) \red{ \frac{1+tan^{2} A }{1+cot^{2} A } } \\= \frac{ sec^{2} A }{cosec^{2} A }

 \underline { \blue { By \: Trigonometric\: Identities : }}

 \pink { 1) 1+tan^{2} A = sec^{2} A ,}\\\pink{2) 1+cot^{2}  A = cosec^{2} A }

 = \frac{\frac{1}{cos^{2} A}}{\frac{1}{sin^{2} A }}\\= \frac{sin^{2} A }{cos^{2} A } \\= tan ^{2} A \: --(1)

 ii ) \red { \Big( \frac{1-tanA}{1-cotA}\Big)^{2}}

 =  \Big(\frac{(1-tan A)}{ 1 - \frac{1}{tan A }}\Big)^{2}

 = \Big( \frac{(1-tan A)}{  \frac{tan A - 1}{tan A }}\Big)^{2}

 = \Big( \frac{1-tan A}{  \frac{-(1-tan A )}{tan A }}\Big)^{2}

 = \Big( \frac{1}{\frac{-1}{tan A}}\Big)^{2}\\= tan^{2} A \: ---(2)

 From\: (1) \:and \:(2) ,

 \red{ \frac{1+tan^{2} A }{1+cot^{2} A } } \red { = \Big( \frac{1-tanA}{1-cotA}\Big)^{2}} \green {= tan^{2} A }

•••♪

Similar questions