Math, asked by vrt65404, 4 months ago

1-tan2A/1+tan2A=1-2sin2A

Answers

Answered by Aryan0123
5

To prove:

\bf{\dfrac{1 - tan^{2}A}{1 + tan^{2}A} = 1 - 2sin^{2}A}\\\\\\

Identities used:

  • sec A = 1 ÷ cos A
  • tan A = sin A ÷ cos A
  • sin² A + cos² A = 1

Solution :-

Taking LHS,

\sf{\dfrac{1 - tan^{2}A}{1 + tan^{2}A} }\\\\

= \: \sf{\dfrac{1 - \dfrac{sin^{2}A}{cos^{2}A}}{1 + \dfrac{sin^{2}A}{cos^{2}A}}}\\\\

\sf{On \: taking \: LCM,}\\

= \: \sf{\dfrac{\dfrac{cos^{2}A - sin^{2}A}{cos^{2}A}}{\dfrac{sin^{2}A + cos^{2}A}{cos^{2}A}}}\\\\

= \: \sf{\dfrac{cos^{2}A - sin^{2}A}{cos^{2} A} \times \dfrac{cos^{2} A}{1}}\\\\

= \: \sf{cos^{2}A - sin^{2}A}\\\\

= \: \sf{(1 - sin^{2}A) - sin^{2}A}\\\\

= \sf{1 - sin^{2} A - sin^{2} A}\\\\

= \boxed{\sf{1 - 2 sin^{2}A}}\\\\

Hence Proved

Attachments:
Similar questions