Math, asked by bhumikamalhotra714, 4 months ago

(1-tanA/1-cotA)²= tan²A prove it

Answers

Answered by Snapskg730
10

Answer:

L.H.S

 (\frac{1 -  \tan \: a }{1 -  \cot \: a } ) {}^{2}

 \frac{(1 - tan \: a) {}^{2} }{(1 - cot \: a) {}^{2} }

 \frac{ (1 - \frac{sin \: a}{cos \: a}) {}^{2}  }{(1 -  \frac{cos \: a}{sin \: a} ) {}^{2} }

 \frac{( \frac{cos \:  - sin}{cos}) {}^{2}  }{( \frac{sin \:  - cos}{sin}) {}^{2}  }

 \frac{( \frac{cos {}^{2}   +  sin {}^{2} - 2cos \: sin }{cos {}^{2} }) }{ \frac{sin {}^{2} + cos {}^{2} - 2sin \: cos  }{sin {}^{2} } }

 \frac{ \frac{1}{cos {}^{2} a} }{ \frac{1}{sin {}^{2}a } }

 \frac{sin {}^{2}a }{cos {}^{2}a }

( \frac{sin \: a}{cos \: a} ) {}^{2}

 = tan {}^{2} a

L.HS = R.H.S

hence proved

FOLLOW ME ON BRAINLY

Similar questions