1-tana/1+tana=1-sin2a/cos2a
Answers
Answer:
Hey mate..........
Step-by-step explanation:
(1-tan A)/(1+tanA)= (cos 2A)/(1+sin 2A)
To prove that the LHS (left hand side) = RHS (right hand side) we must manipulate the expressions. Changing the left hand side
1. 1-tan A =1-sinA/cosA (numerator)
2. 1+tan A = 1+sinA/cosA(denominator)
Now use the LCD for 1. and 2. which iscosA
1. therefore 1-sinA/cosA = (cosA - sinA)/cos A (numerator) and
2.therefore 1+sinA/cosA = (cosA + sinA)/cos A (denominator)
Now 1. is divided by 2.
therefore ((cosA-sinA)/cosA) divide ((cosA+sinA)/cosA)
therefore =(cosA-sinA)/(cosA+sinA)because the cos As will cancel out (divide )
Now multiply our new expression by(cosA +sin A)/(cosA+sinA)because it will allow us to simplify effectively to obtain the RHS and is the same as1/1.
therefore = (cosA-sinA)/(cosA+sinA) times (cosA+sinA)/(cosA+sinA)
therefore = (cos^2A - sin^2A)/(cosA + sinA)^2
We know from double angle identities that :cos^2A-sin^2=cos2A
We know from the perfect square (our denominator) that:
(cosA+sinA)^2 = cos^2A +2sinAcosA + sin^2A
Now rearrange the order of the square:
cos^2A +sin^2A + 2sinAcosA
We know from identities thatcos^2A +sin^2A = 1
and2sinAcosA = sin2A
Now put all the information of our denominator together:
therefore (cosA+sinA)^2 = 1+sin2A
Now combine with the numerator which we recall as:
sin^2A-cos^2a = cos 2A
therefore = (cos2A)/ (1+sin2A)
therefore LHS=RHS
Hope it helped......