Math, asked by binitapathak20, 5 months ago

1-tanA/1+tanA = 1-sin2A/cos2A​

Answers

Answered by mathdude500
1

\huge\pink{\boxed{\blue{\boxed{ \purple{ \boxed{{\pink{Answer}}}}}}}} \\ \large\pink{\boxed{\blue{\boxed{ \purple{ \boxed{{\pink{Your~answer↓}}}}}}}}

To prove :-

\boxed{ \large{ { \frac{1 - tanA}{1 + tanA} =  \frac{1  - sin2A}{cos2A}  }}}

Formula's used

\boxed{ \large{ \mathfrak{sin2z = 2sinzcosz}}}

\boxed{ \large{ \mathfrak{1 - cos2z = 2 {sin}^{2} z}}}

Solution :-

Consider LHS :-

 \frac{1 - sin2A}{cos2A}  \\  =  \frac{1 - cos( \frac{\pi}{2}  - 2A)}{sin( \frac{\pi}{2}  - 2A)}  \\ \small\bold\red{(let \:  \frac{\pi}{2}  - 2A = y)} \\ so \: above \: can \: be \: rewritten \: as \\  =  \frac{1 - cosy}{siny}  \\  =  \frac{ {2sin}^{2} \frac{y}{2}  }{2sin \frac{y}{2}cos \frac{y}{2}  }  \\  =  \frac{sin \frac{y}{2} }{cos \frac{y}{2} }  \\  = tan \frac{y}{2}  \\  = tan( \frac{ \frac{\pi}{2}  - 2A}{2} ) \\  = tan( \frac{\pi}{4}  - A) \\  =  \frac{1 - tanA}{1 + tanA}

\boxed{ \large{ \mathfrak{hence \: proved}}}

\boxed{ \large{ \mathfrak{Mark \:  me \:  as  \: Brainliest}}}

Similar questions