(1+tanA+cotA)(sinA-cosA)= (secA/cosec²A - cosecA /sec²A )
Attachments:
Answers
Answered by
1
Left hand side:= (1+cotA+tanA)(sinA−cosA)
= (1+cosAsinA+sinAcosA)(sinA−cosA)
= (sinAcosA+sin2A+cos2AsinAcosA)(sinA−cosA)
= sin3A−cos3AsinAcosA
= sin2AcosA−cos2AsinA
= secAcosec2A−cosecAsec2A
= RHS
HEBCE PROVED
= (1+cosAsinA+sinAcosA)(sinA−cosA)
= (sinAcosA+sin2A+cos2AsinAcosA)(sinA−cosA)
= sin3A−cos3AsinAcosA
= sin2AcosA−cos2AsinA
= secAcosec2A−cosecAsec2A
= RHS
HEBCE PROVED
aastha27:
what have you done in 3rd step... can you explain it more further ..
Similar questions